**Description:** Equality deduction for intersection of two classes. (Contributed by NM, 10-Apr-1994)

Ref | Expression | ||
---|---|---|---|

Hypothesis | ineq1d.1 | $${\u22a2}{\phi}\to {A}={B}$$ | |

Assertion | ineq2d | $${\u22a2}{\phi}\to {C}\cap {A}={C}\cap {B}$$ |

Step | Hyp | Ref | Expression |
---|---|---|---|

1 | ineq1d.1 | $${\u22a2}{\phi}\to {A}={B}$$ | |

2 | ineq2 | $${\u22a2}{A}={B}\to {C}\cap {A}={C}\cap {B}$$ | |

3 | 1 2 | syl | $${\u22a2}{\phi}\to {C}\cap {A}={C}\cap {B}$$ |