Metamath Proof Explorer


Theorem ineq12d

Description: Equality deduction for intersection of two classes. (Contributed by NM, 24-Jun-2004) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Hypotheses ineq1d.1 φA=B
ineq12d.2 φC=D
Assertion ineq12d φAC=BD

Proof

Step Hyp Ref Expression
1 ineq1d.1 φA=B
2 ineq12d.2 φC=D
3 ineq12 A=BC=DAC=BD
4 1 2 3 syl2anc φAC=BD