Metamath Proof Explorer


Theorem epfrc

Description: A subset of a well-founded class has a minimal element. (Contributed by NM, 17-Feb-2004) (Revised by David Abernethy, 22-Feb-2011)

Ref Expression
Hypothesis epfrc.1 BV
Assertion epfrc EFrABABxBBx=

Proof

Step Hyp Ref Expression
1 epfrc.1 BV
2 1 frc EFrABABxByB|yEx=
3 dfin5 Bx=yB|yx
4 epel yExyx
5 4 rabbii yB|yEx=yB|yx
6 3 5 eqtr4i Bx=yB|yEx
7 6 eqeq1i Bx=yB|yEx=
8 7 rexbii xBBx=xByB|yEx=
9 2 8 sylibr EFrABABxBBx=