Description: A subset of a well-founded class has a minimal element. (Contributed by NM, 17-Feb-2004) (Revised by David Abernethy, 22-Feb-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | epfrc.1 | ⊢ 𝐵 ∈ V | |
| Assertion | epfrc | ⊢ ( ( E Fr 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐵 ( 𝐵 ∩ 𝑥 ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | epfrc.1 | ⊢ 𝐵 ∈ V | |
| 2 | 1 | frc | ⊢ ( ( E Fr 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐵 { 𝑦 ∈ 𝐵 ∣ 𝑦 E 𝑥 } = ∅ ) |
| 3 | dfin5 | ⊢ ( 𝐵 ∩ 𝑥 ) = { 𝑦 ∈ 𝐵 ∣ 𝑦 ∈ 𝑥 } | |
| 4 | epel | ⊢ ( 𝑦 E 𝑥 ↔ 𝑦 ∈ 𝑥 ) | |
| 5 | 4 | rabbii | ⊢ { 𝑦 ∈ 𝐵 ∣ 𝑦 E 𝑥 } = { 𝑦 ∈ 𝐵 ∣ 𝑦 ∈ 𝑥 } |
| 6 | 3 5 | eqtr4i | ⊢ ( 𝐵 ∩ 𝑥 ) = { 𝑦 ∈ 𝐵 ∣ 𝑦 E 𝑥 } |
| 7 | 6 | eqeq1i | ⊢ ( ( 𝐵 ∩ 𝑥 ) = ∅ ↔ { 𝑦 ∈ 𝐵 ∣ 𝑦 E 𝑥 } = ∅ ) |
| 8 | 7 | rexbii | ⊢ ( ∃ 𝑥 ∈ 𝐵 ( 𝐵 ∩ 𝑥 ) = ∅ ↔ ∃ 𝑥 ∈ 𝐵 { 𝑦 ∈ 𝐵 ∣ 𝑦 E 𝑥 } = ∅ ) |
| 9 | 2 8 | sylibr | ⊢ ( ( E Fr 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐵 ( 𝐵 ∩ 𝑥 ) = ∅ ) |