Metamath Proof Explorer


Theorem frc

Description: Property of well-founded relation (one direction of definition using class variables). (Contributed by NM, 17-Feb-2004) (Revised by Mario Carneiro, 19-Nov-2014)

Ref Expression
Hypothesis frc.1 𝐵 ∈ V
Assertion frc ( ( 𝑅 Fr 𝐴𝐵𝐴𝐵 ≠ ∅ ) → ∃ 𝑥𝐵 { 𝑦𝐵𝑦 𝑅 𝑥 } = ∅ )

Proof

Step Hyp Ref Expression
1 frc.1 𝐵 ∈ V
2 fri ( ( ( 𝐵 ∈ V ∧ 𝑅 Fr 𝐴 ) ∧ ( 𝐵𝐴𝐵 ≠ ∅ ) ) → ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 𝑅 𝑥 )
3 1 2 mpanl1 ( ( 𝑅 Fr 𝐴 ∧ ( 𝐵𝐴𝐵 ≠ ∅ ) ) → ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 𝑅 𝑥 )
4 3 3impb ( ( 𝑅 Fr 𝐴𝐵𝐴𝐵 ≠ ∅ ) → ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 𝑅 𝑥 )
5 rabeq0 ( { 𝑦𝐵𝑦 𝑅 𝑥 } = ∅ ↔ ∀ 𝑦𝐵 ¬ 𝑦 𝑅 𝑥 )
6 5 rexbii ( ∃ 𝑥𝐵 { 𝑦𝐵𝑦 𝑅 𝑥 } = ∅ ↔ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 𝑅 𝑥 )
7 4 6 sylibr ( ( 𝑅 Fr 𝐴𝐵𝐴𝐵 ≠ ∅ ) → ∃ 𝑥𝐵 { 𝑦𝐵𝑦 𝑅 𝑥 } = ∅ )