Metamath Proof Explorer
		
		
		
		Description:  An inference based on modus ponens.  (Contributed by NM, 16-Aug-1994)
       (Proof shortened by Wolf Lammen, 7-Apr-2013)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						mpanl1.1 | 
						⊢ 𝜑  | 
					
					
						 | 
						 | 
						mpanl1.2 | 
						⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  𝜒 )  →  𝜃 )  | 
					
				
					 | 
					Assertion | 
					mpanl1 | 
					⊢  ( ( 𝜓  ∧  𝜒 )  →  𝜃 )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							mpanl1.1 | 
							⊢ 𝜑  | 
						
						
							| 2 | 
							
								
							 | 
							mpanl1.2 | 
							⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  𝜒 )  →  𝜃 )  | 
						
						
							| 3 | 
							
								1
							 | 
							jctl | 
							⊢ ( 𝜓  →  ( 𝜑  ∧  𝜓 ) )  | 
						
						
							| 4 | 
							
								3 2
							 | 
							sylan | 
							⊢ ( ( 𝜓  ∧  𝜒 )  →  𝜃 )  |