Metamath Proof Explorer


Definition df-uni

Description: Define the union of a class i.e. the collection of all members of the members of the class. Definition 5.5 of TakeutiZaring p. 16. For example, U. { { 1 , 3 } , { 1 , 8 } } = { 1 , 3 , 8 } ( ex-uni ). This is similar to the union of two classes df-un . (Contributed by NM, 23-Aug-1993)

Ref Expression
Assertion df-uni A=x|yxyyA

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA classA
1 0 cuni classA
2 vx setvarx
3 vy setvary
4 2 cv setvarx
5 3 cv setvary
6 4 5 wcel wffxy
7 5 0 wcel wffyA
8 6 7 wa wffxyyA
9 8 3 wex wffyxyyA
10 9 2 cab classx|yxyyA
11 1 10 wceq wffA=x|yxyyA