Description: An ordinal class is equal to its union if and only if it is not the successor of an ordinal. Closed-form generalization of onuninsuci . (Contributed by NM, 18-Feb-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | orduninsuc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordeleqon | |
|
2 | id | |
|
3 | unieq | |
|
4 | 2 3 | eqeq12d | |
5 | eqeq1 | |
|
6 | 5 | rexbidv | |
7 | 6 | notbid | |
8 | 4 7 | bibi12d | |
9 | 0elon | |
|
10 | 9 | elimel | |
11 | 10 | onuninsuci | |
12 | 8 11 | dedth | |
13 | unon | |
|
14 | 13 | eqcomi | |
15 | onprc | |
|
16 | vex | |
|
17 | 16 | sucex | |
18 | eleq1 | |
|
19 | 17 18 | mpbiri | |
20 | 15 19 | mto | |
21 | 20 | a1i | |
22 | 21 | nrex | |
23 | 14 22 | 2th | |
24 | id | |
|
25 | unieq | |
|
26 | 24 25 | eqeq12d | |
27 | eqeq1 | |
|
28 | 27 | rexbidv | |
29 | 28 | notbid | |
30 | 26 29 | bibi12d | |
31 | 23 30 | mpbiri | |
32 | 12 31 | jaoi | |
33 | 1 32 | sylbi | |