Metamath Proof Explorer


Theorem orduninsuc

Description: An ordinal class is equal to its union if and only if it is not the successor of an ordinal. Closed-form generalization of onuninsuci . (Contributed by NM, 18-Feb-2004)

Ref Expression
Assertion orduninsuc OrdAA=A¬xOnA=sucx

Proof

Step Hyp Ref Expression
1 ordeleqon OrdAAOnA=On
2 id A=ifAOnAA=ifAOnA
3 unieq A=ifAOnAA=ifAOnA
4 2 3 eqeq12d A=ifAOnAA=AifAOnA=ifAOnA
5 eqeq1 A=ifAOnAA=sucxifAOnA=sucx
6 5 rexbidv A=ifAOnAxOnA=sucxxOnifAOnA=sucx
7 6 notbid A=ifAOnA¬xOnA=sucx¬xOnifAOnA=sucx
8 4 7 bibi12d A=ifAOnAA=A¬xOnA=sucxifAOnA=ifAOnA¬xOnifAOnA=sucx
9 0elon On
10 9 elimel ifAOnAOn
11 10 onuninsuci ifAOnA=ifAOnA¬xOnifAOnA=sucx
12 8 11 dedth AOnA=A¬xOnA=sucx
13 unon On=On
14 13 eqcomi On=On
15 onprc ¬OnV
16 vex xV
17 16 sucex sucxV
18 eleq1 On=sucxOnVsucxV
19 17 18 mpbiri On=sucxOnV
20 15 19 mto ¬On=sucx
21 20 a1i xOn¬On=sucx
22 21 nrex ¬xOnOn=sucx
23 14 22 2th On=On¬xOnOn=sucx
24 id A=OnA=On
25 unieq A=OnA=On
26 24 25 eqeq12d A=OnA=AOn=On
27 eqeq1 A=OnA=sucxOn=sucx
28 27 rexbidv A=OnxOnA=sucxxOnOn=sucx
29 28 notbid A=On¬xOnA=sucx¬xOnOn=sucx
30 26 29 bibi12d A=OnA=A¬xOnA=sucxOn=On¬xOnOn=sucx
31 23 30 mpbiri A=OnA=A¬xOnA=sucx
32 12 31 jaoi AOnA=OnA=A¬xOnA=sucx
33 1 32 sylbi OrdAA=A¬xOnA=sucx