| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ordeleqon |
|- ( Ord A <-> ( A e. On \/ A = On ) ) |
| 2 |
|
id |
|- ( A = if ( A e. On , A , (/) ) -> A = if ( A e. On , A , (/) ) ) |
| 3 |
|
unieq |
|- ( A = if ( A e. On , A , (/) ) -> U. A = U. if ( A e. On , A , (/) ) ) |
| 4 |
2 3
|
eqeq12d |
|- ( A = if ( A e. On , A , (/) ) -> ( A = U. A <-> if ( A e. On , A , (/) ) = U. if ( A e. On , A , (/) ) ) ) |
| 5 |
|
eqeq1 |
|- ( A = if ( A e. On , A , (/) ) -> ( A = suc x <-> if ( A e. On , A , (/) ) = suc x ) ) |
| 6 |
5
|
rexbidv |
|- ( A = if ( A e. On , A , (/) ) -> ( E. x e. On A = suc x <-> E. x e. On if ( A e. On , A , (/) ) = suc x ) ) |
| 7 |
6
|
notbid |
|- ( A = if ( A e. On , A , (/) ) -> ( -. E. x e. On A = suc x <-> -. E. x e. On if ( A e. On , A , (/) ) = suc x ) ) |
| 8 |
4 7
|
bibi12d |
|- ( A = if ( A e. On , A , (/) ) -> ( ( A = U. A <-> -. E. x e. On A = suc x ) <-> ( if ( A e. On , A , (/) ) = U. if ( A e. On , A , (/) ) <-> -. E. x e. On if ( A e. On , A , (/) ) = suc x ) ) ) |
| 9 |
|
0elon |
|- (/) e. On |
| 10 |
9
|
elimel |
|- if ( A e. On , A , (/) ) e. On |
| 11 |
10
|
onuninsuci |
|- ( if ( A e. On , A , (/) ) = U. if ( A e. On , A , (/) ) <-> -. E. x e. On if ( A e. On , A , (/) ) = suc x ) |
| 12 |
8 11
|
dedth |
|- ( A e. On -> ( A = U. A <-> -. E. x e. On A = suc x ) ) |
| 13 |
|
unon |
|- U. On = On |
| 14 |
13
|
eqcomi |
|- On = U. On |
| 15 |
|
onprc |
|- -. On e. _V |
| 16 |
|
vex |
|- x e. _V |
| 17 |
16
|
sucex |
|- suc x e. _V |
| 18 |
|
eleq1 |
|- ( On = suc x -> ( On e. _V <-> suc x e. _V ) ) |
| 19 |
17 18
|
mpbiri |
|- ( On = suc x -> On e. _V ) |
| 20 |
15 19
|
mto |
|- -. On = suc x |
| 21 |
20
|
a1i |
|- ( x e. On -> -. On = suc x ) |
| 22 |
21
|
nrex |
|- -. E. x e. On On = suc x |
| 23 |
14 22
|
2th |
|- ( On = U. On <-> -. E. x e. On On = suc x ) |
| 24 |
|
id |
|- ( A = On -> A = On ) |
| 25 |
|
unieq |
|- ( A = On -> U. A = U. On ) |
| 26 |
24 25
|
eqeq12d |
|- ( A = On -> ( A = U. A <-> On = U. On ) ) |
| 27 |
|
eqeq1 |
|- ( A = On -> ( A = suc x <-> On = suc x ) ) |
| 28 |
27
|
rexbidv |
|- ( A = On -> ( E. x e. On A = suc x <-> E. x e. On On = suc x ) ) |
| 29 |
28
|
notbid |
|- ( A = On -> ( -. E. x e. On A = suc x <-> -. E. x e. On On = suc x ) ) |
| 30 |
26 29
|
bibi12d |
|- ( A = On -> ( ( A = U. A <-> -. E. x e. On A = suc x ) <-> ( On = U. On <-> -. E. x e. On On = suc x ) ) ) |
| 31 |
23 30
|
mpbiri |
|- ( A = On -> ( A = U. A <-> -. E. x e. On A = suc x ) ) |
| 32 |
12 31
|
jaoi |
|- ( ( A e. On \/ A = On ) -> ( A = U. A <-> -. E. x e. On A = suc x ) ) |
| 33 |
1 32
|
sylbi |
|- ( Ord A -> ( A = U. A <-> -. E. x e. On A = suc x ) ) |