Metamath Proof Explorer


Theorem elimel

Description: Eliminate a membership hypothesis for weak deduction theorem, when special case B e. C is provable. (Contributed by NM, 15-May-1999)

Ref Expression
Hypothesis elimel.1
|- B e. C
Assertion elimel
|- if ( A e. C , A , B ) e. C

Proof

Step Hyp Ref Expression
1 elimel.1
 |-  B e. C
2 eleq1
 |-  ( A = if ( A e. C , A , B ) -> ( A e. C <-> if ( A e. C , A , B ) e. C ) )
3 eleq1
 |-  ( B = if ( A e. C , A , B ) -> ( B e. C <-> if ( A e. C , A , B ) e. C ) )
4 2 3 1 elimhyp
 |-  if ( A e. C , A , B ) e. C