| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elimhyp.1 |  |-  ( A = if ( ph , A , B ) -> ( ph <-> ps ) ) | 
						
							| 2 |  | elimhyp.2 |  |-  ( B = if ( ph , A , B ) -> ( ch <-> ps ) ) | 
						
							| 3 |  | elimhyp.3 |  |-  ch | 
						
							| 4 |  | iftrue |  |-  ( ph -> if ( ph , A , B ) = A ) | 
						
							| 5 | 4 | eqcomd |  |-  ( ph -> A = if ( ph , A , B ) ) | 
						
							| 6 | 5 1 | syl |  |-  ( ph -> ( ph <-> ps ) ) | 
						
							| 7 | 6 | ibi |  |-  ( ph -> ps ) | 
						
							| 8 |  | iffalse |  |-  ( -. ph -> if ( ph , A , B ) = B ) | 
						
							| 9 | 8 | eqcomd |  |-  ( -. ph -> B = if ( ph , A , B ) ) | 
						
							| 10 | 9 2 | syl |  |-  ( -. ph -> ( ch <-> ps ) ) | 
						
							| 11 | 3 10 | mpbii |  |-  ( -. ph -> ps ) | 
						
							| 12 | 7 11 | pm2.61i |  |-  ps |