Metamath Proof Explorer


Theorem peano5OLD

Description: Obsolete version of peano5 as of 3-Oct-2024. (Contributed by NM, 18-Feb-2004) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion peano5OLD AxωxAsucxAωA

Proof

Step Hyp Ref Expression
1 eldifn yωA¬yA
2 1 adantl AxωxAsucxAyωA¬yA
3 eldifi yωAyω
4 elndif A¬ωA
5 eleq1 y=yωAωA
6 5 biimpcd yωAy=ωA
7 6 necon3bd yωA¬ωAy
8 4 7 mpan9 AyωAy
9 nnsuc yωyxωy=sucx
10 3 8 9 syl2an2 AyωAxωy=sucx
11 10 ad4ant13 AxωxAsucxAyωAωAy=xωy=sucx
12 nfra1 xxωxAsucxA
13 nfv xyωAωAy=
14 12 13 nfan xxωxAsucxAyωAωAy=
15 nfv xyA
16 rsp xωxAsucxAxωxAsucxA
17 vex xV
18 17 sucid xsucx
19 eleq2 y=sucxxyxsucx
20 18 19 mpbiri y=sucxxy
21 eleq1 y=sucxyωsucxω
22 peano2b xωsucxω
23 21 22 bitr4di y=sucxyωxω
24 minel xyωAy=¬xωA
25 neldif xω¬xωAxA
26 24 25 sylan2 xωxyωAy=xA
27 26 exp32 xωxyωAy=xA
28 23 27 syl6bi y=sucxyωxyωAy=xA
29 20 28 mpid y=sucxyωωAy=xA
30 3 29 syl5 y=sucxyωAωAy=xA
31 30 impd y=sucxyωAωAy=xA
32 eleq1a sucxAy=sucxyA
33 32 com12 y=sucxsucxAyA
34 31 33 imim12d y=sucxxAsucxAyωAωAy=yA
35 34 com13 yωAωAy=xAsucxAy=sucxyA
36 16 35 sylan9 xωxAsucxAyωAωAy=xωy=sucxyA
37 14 15 36 rexlimd xωxAsucxAyωAωAy=xωy=sucxyA
38 37 exp32 xωxAsucxAyωAωAy=xωy=sucxyA
39 38 a1i AxωxAsucxAyωAωAy=xωy=sucxyA
40 39 imp41 AxωxAsucxAyωAωAy=xωy=sucxyA
41 11 40 mpd AxωxAsucxAyωAωAy=yA
42 2 41 mtand AxωxAsucxAyωA¬ωAy=
43 42 nrexdv AxωxAsucxA¬yωAωAy=
44 ordom Ordω
45 difss ωAω
46 tz7.5 OrdωωAωωAyωAωAy=
47 44 45 46 mp3an12 ωAyωAωAy=
48 47 necon1bi ¬yωAωAy=ωA=
49 43 48 syl AxωxAsucxAωA=
50 ssdif0 ωAωA=
51 49 50 sylibr AxωxAsucxAωA