Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
rexlimd
Metamath Proof Explorer
Description: Deduction form of rexlimd . (Contributed by NM , 27-May-1998) (Proof
shortened by Andrew Salmon , 30-May-2011) (Proof shortened by Wolf
Lammen , 14-Jan-2020)
Ref
Expression
Hypotheses
rexlimd.1
⊢ Ⅎ x φ
rexlimd.2
⊢ Ⅎ x χ
rexlimd.3
⊢ φ → x ∈ A → ψ → χ
Assertion
rexlimd
⊢ φ → ∃ x ∈ A ψ → χ
Proof
Step
Hyp
Ref
Expression
1
rexlimd.1
⊢ Ⅎ x φ
2
rexlimd.2
⊢ Ⅎ x χ
3
rexlimd.3
⊢ φ → x ∈ A → ψ → χ
4
2
a1i
⊢ φ → Ⅎ x χ
5
1 4 3
rexlimd2
⊢ φ → ∃ x ∈ A ψ → χ