Metamath Proof Explorer


Theorem rexlimd

Description: Deduction form of rexlimd . (Contributed by NM, 27-May-1998) (Proof shortened by Andrew Salmon, 30-May-2011) (Proof shortened by Wolf Lammen, 14-Jan-2020)

Ref Expression
Hypotheses rexlimd.1 x φ
rexlimd.2 x χ
rexlimd.3 φ x A ψ χ
Assertion rexlimd φ x A ψ χ

Proof

Step Hyp Ref Expression
1 rexlimd.1 x φ
2 rexlimd.2 x χ
3 rexlimd.3 φ x A ψ χ
4 2 a1i φ x χ
5 1 4 3 rexlimd2 φ x A ψ χ