Metamath Proof Explorer


Theorem rexlimd

Description: Deduction form of rexlimd . For a version based on fewer axioms see rexlimdv . (Contributed by NM, 27-May-1998) (Proof shortened by Andrew Salmon, 30-May-2011) (Proof shortened by Wolf Lammen, 14-Jan-2020)

Ref Expression
Hypotheses rexlimd.1 xφ
rexlimd.2 xχ
rexlimd.3 φxAψχ
Assertion rexlimd φxAψχ

Proof

Step Hyp Ref Expression
1 rexlimd.1 xφ
2 rexlimd.2 xχ
3 rexlimd.3 φxAψχ
4 2 a1i φxχ
5 1 4 3 rexlimd2 φxAψχ