Metamath Proof Explorer


Theorem rexlimd

Description: Deduction form of rexlimd . (Contributed by NM, 27-May-1998) (Proof shortened by Andrew Salmon, 30-May-2011) (Proof shortened by Wolf Lammen, 14-Jan-2020)

Ref Expression
Hypotheses rexlimd.1
|- F/ x ph
rexlimd.2
|- F/ x ch
rexlimd.3
|- ( ph -> ( x e. A -> ( ps -> ch ) ) )
Assertion rexlimd
|- ( ph -> ( E. x e. A ps -> ch ) )

Proof

Step Hyp Ref Expression
1 rexlimd.1
 |-  F/ x ph
2 rexlimd.2
 |-  F/ x ch
3 rexlimd.3
 |-  ( ph -> ( x e. A -> ( ps -> ch ) ) )
4 2 a1i
 |-  ( ph -> F/ x ch )
5 1 4 3 rexlimd2
 |-  ( ph -> ( E. x e. A ps -> ch ) )