Metamath Proof Explorer


Theorem rexlimd2

Description: Version of rexlimd with deduction version of second hypothesis. (Contributed by NM, 21-Jul-2013) (Revised by Mario Carneiro, 8-Oct-2016)

Ref Expression
Hypotheses rexlimd2.1
|- F/ x ph
rexlimd2.2
|- ( ph -> F/ x ch )
rexlimd2.3
|- ( ph -> ( x e. A -> ( ps -> ch ) ) )
Assertion rexlimd2
|- ( ph -> ( E. x e. A ps -> ch ) )

Proof

Step Hyp Ref Expression
1 rexlimd2.1
 |-  F/ x ph
2 rexlimd2.2
 |-  ( ph -> F/ x ch )
3 rexlimd2.3
 |-  ( ph -> ( x e. A -> ( ps -> ch ) ) )
4 1 3 ralrimi
 |-  ( ph -> A. x e. A ( ps -> ch ) )
5 r19.23t
 |-  ( F/ x ch -> ( A. x e. A ( ps -> ch ) <-> ( E. x e. A ps -> ch ) ) )
6 2 5 syl
 |-  ( ph -> ( A. x e. A ( ps -> ch ) <-> ( E. x e. A ps -> ch ) ) )
7 4 6 mpbid
 |-  ( ph -> ( E. x e. A ps -> ch ) )