Metamath Proof Explorer


Theorem ralrimi

Description: Inference from Theorem 19.21 of Margaris p. 90 (restricted quantifier version). (Contributed by NM, 10-Oct-1999) Shortened after introduction of hbralrimi . (Revised by Wolf Lammen, 4-Dec-2019)

Ref Expression
Hypotheses ralrimi.1
|- F/ x ph
ralrimi.2
|- ( ph -> ( x e. A -> ps ) )
Assertion ralrimi
|- ( ph -> A. x e. A ps )

Proof

Step Hyp Ref Expression
1 ralrimi.1
 |-  F/ x ph
2 ralrimi.2
 |-  ( ph -> ( x e. A -> ps ) )
3 1 nf5ri
 |-  ( ph -> A. x ph )
4 3 2 hbralrimi
 |-  ( ph -> A. x e. A ps )