Metamath Proof Explorer


Theorem ralrimi

Description: Inference from Theorem 19.21 of Margaris p. 90 (restricted quantifier version). For a version based on fewer axioms see ralrimiv . (Contributed by NM, 10-Oct-1999) Shortened after introduction of hbralrimi . (Revised by Wolf Lammen, 4-Dec-2019)

Ref Expression
Hypotheses ralrimi.1 xφ
ralrimi.2 φxAψ
Assertion ralrimi φxAψ

Proof

Step Hyp Ref Expression
1 ralrimi.1 xφ
2 ralrimi.2 φxAψ
3 1 nf5ri φxφ
4 3 2 hbralrimi φxAψ