Description: Version of rexlimd with deduction version of second hypothesis. (Contributed by NM, 21-Jul-2013) (Revised by Mario Carneiro, 8-Oct-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rexlimd2.1 | ⊢ Ⅎ 𝑥 𝜑 | |
rexlimd2.2 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝜒 ) | ||
rexlimd2.3 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ( 𝜓 → 𝜒 ) ) ) | ||
Assertion | rexlimd2 | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜓 → 𝜒 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimd2.1 | ⊢ Ⅎ 𝑥 𝜑 | |
2 | rexlimd2.2 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝜒 ) | |
3 | rexlimd2.3 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ( 𝜓 → 𝜒 ) ) ) | |
4 | 1 3 | ralrimi | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜒 ) ) |
5 | r19.23t | ⊢ ( Ⅎ 𝑥 𝜒 → ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜒 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝜓 → 𝜒 ) ) ) | |
6 | 2 5 | syl | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜒 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝜓 → 𝜒 ) ) ) |
7 | 4 6 | mpbid | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜓 → 𝜒 ) ) |