Metamath Proof Explorer


Theorem rexlimd2

Description: Version of rexlimd with deduction version of second hypothesis. (Contributed by NM, 21-Jul-2013) (Revised by Mario Carneiro, 8-Oct-2016)

Ref Expression
Hypotheses rexlimd2.1 𝑥 𝜑
rexlimd2.2 ( 𝜑 → Ⅎ 𝑥 𝜒 )
rexlimd2.3 ( 𝜑 → ( 𝑥𝐴 → ( 𝜓𝜒 ) ) )
Assertion rexlimd2 ( 𝜑 → ( ∃ 𝑥𝐴 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 rexlimd2.1 𝑥 𝜑
2 rexlimd2.2 ( 𝜑 → Ⅎ 𝑥 𝜒 )
3 rexlimd2.3 ( 𝜑 → ( 𝑥𝐴 → ( 𝜓𝜒 ) ) )
4 1 3 ralrimi ( 𝜑 → ∀ 𝑥𝐴 ( 𝜓𝜒 ) )
5 r19.23t ( Ⅎ 𝑥 𝜒 → ( ∀ 𝑥𝐴 ( 𝜓𝜒 ) ↔ ( ∃ 𝑥𝐴 𝜓𝜒 ) ) )
6 2 5 syl ( 𝜑 → ( ∀ 𝑥𝐴 ( 𝜓𝜒 ) ↔ ( ∃ 𝑥𝐴 𝜓𝜒 ) ) )
7 4 6 mpbid ( 𝜑 → ( ∃ 𝑥𝐴 𝜓𝜒 ) )