Metamath Proof Explorer


Theorem ordom

Description: The class of finite ordinals _om is ordinal. Theorem 7.32 of TakeutiZaring p. 43. Theorem 1.22 of Schloeder p. 3. (Contributed by NM, 18-Oct-1995) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion ordom Ordω

Proof

Step Hyp Ref Expression
1 trom Trω
2 omsson ωOn
3 ordon OrdOn
4 trssord TrωωOnOrdOnOrdω
5 1 2 3 4 mp3an Ordω