Metamath Proof Explorer


Theorem trssord

Description: A transitive subclass of an ordinal class is ordinal. (Contributed by NM, 29-May-1994)

Ref Expression
Assertion trssord TrAABOrdBOrdA

Proof

Step Hyp Ref Expression
1 wess ABEWeBEWeA
2 ordwe OrdBEWeB
3 1 2 impel ABOrdBEWeA
4 3 anim2i TrAABOrdBTrAEWeA
5 4 3impb TrAABOrdBTrAEWeA
6 df-ord OrdATrAEWeA
7 5 6 sylibr TrAABOrdBOrdA