Metamath Proof Explorer


Theorem ordwe

Description: Membership well-orders every ordinal. Proposition 7.4 of TakeutiZaring p. 36. (Contributed by NM, 3-Apr-1994)

Ref Expression
Assertion ordwe OrdAEWeA

Proof

Step Hyp Ref Expression
1 df-ord OrdATrAEWeA
2 1 simprbi OrdAEWeA