Metamath Proof Explorer


Theorem nnacl

Description: Closure of addition of natural numbers. Proposition 8.9 of TakeutiZaring p. 59. Theorem 2.20 of Schloeder p. 6. (Contributed by NM, 20-Sep-1995) (Proof shortened by Andrew Salmon, 22-Oct-2011)

Ref Expression
Assertion nnacl AωBωA+𝑜Bω

Proof

Step Hyp Ref Expression
1 oveq2 x=BA+𝑜x=A+𝑜B
2 1 eleq1d x=BA+𝑜xωA+𝑜Bω
3 2 imbi2d x=BAωA+𝑜xωAωA+𝑜Bω
4 oveq2 x=A+𝑜x=A+𝑜
5 4 eleq1d x=A+𝑜xωA+𝑜ω
6 oveq2 x=yA+𝑜x=A+𝑜y
7 6 eleq1d x=yA+𝑜xωA+𝑜yω
8 oveq2 x=sucyA+𝑜x=A+𝑜sucy
9 8 eleq1d x=sucyA+𝑜xωA+𝑜sucyω
10 nna0 AωA+𝑜=A
11 10 eleq1d AωA+𝑜ωAω
12 11 ibir AωA+𝑜ω
13 peano2 A+𝑜yωsucA+𝑜yω
14 nnasuc AωyωA+𝑜sucy=sucA+𝑜y
15 14 eleq1d AωyωA+𝑜sucyωsucA+𝑜yω
16 13 15 imbitrrid AωyωA+𝑜yωA+𝑜sucyω
17 16 expcom yωAωA+𝑜yωA+𝑜sucyω
18 5 7 9 12 17 finds2 xωAωA+𝑜xω
19 3 18 vtoclga BωAωA+𝑜Bω
20 19 impcom AωBωA+𝑜Bω