Metamath Proof Explorer


Theorem nnmass

Description: Multiplication of natural numbers is associative. Theorem 4K(4) of Enderton p. 81. (Contributed by NM, 20-Sep-1995) (Revised by Mario Carneiro, 15-Nov-2014)

Ref Expression
Assertion nnmass AωBωCωA𝑜B𝑜C=A𝑜B𝑜C

Proof

Step Hyp Ref Expression
1 oveq2 x=CA𝑜B𝑜x=A𝑜B𝑜C
2 oveq2 x=CB𝑜x=B𝑜C
3 2 oveq2d x=CA𝑜B𝑜x=A𝑜B𝑜C
4 1 3 eqeq12d x=CA𝑜B𝑜x=A𝑜B𝑜xA𝑜B𝑜C=A𝑜B𝑜C
5 4 imbi2d x=CAωBωA𝑜B𝑜x=A𝑜B𝑜xAωBωA𝑜B𝑜C=A𝑜B𝑜C
6 oveq2 x=A𝑜B𝑜x=A𝑜B𝑜
7 oveq2 x=B𝑜x=B𝑜
8 7 oveq2d x=A𝑜B𝑜x=A𝑜B𝑜
9 6 8 eqeq12d x=A𝑜B𝑜x=A𝑜B𝑜xA𝑜B𝑜=A𝑜B𝑜
10 oveq2 x=yA𝑜B𝑜x=A𝑜B𝑜y
11 oveq2 x=yB𝑜x=B𝑜y
12 11 oveq2d x=yA𝑜B𝑜x=A𝑜B𝑜y
13 10 12 eqeq12d x=yA𝑜B𝑜x=A𝑜B𝑜xA𝑜B𝑜y=A𝑜B𝑜y
14 oveq2 x=sucyA𝑜B𝑜x=A𝑜B𝑜sucy
15 oveq2 x=sucyB𝑜x=B𝑜sucy
16 15 oveq2d x=sucyA𝑜B𝑜x=A𝑜B𝑜sucy
17 14 16 eqeq12d x=sucyA𝑜B𝑜x=A𝑜B𝑜xA𝑜B𝑜sucy=A𝑜B𝑜sucy
18 nnmcl AωBωA𝑜Bω
19 nnm0 A𝑜BωA𝑜B𝑜=
20 18 19 syl AωBωA𝑜B𝑜=
21 nnm0 BωB𝑜=
22 21 oveq2d BωA𝑜B𝑜=A𝑜
23 nnm0 AωA𝑜=
24 22 23 sylan9eqr AωBωA𝑜B𝑜=
25 20 24 eqtr4d AωBωA𝑜B𝑜=A𝑜B𝑜
26 oveq1 A𝑜B𝑜y=A𝑜B𝑜yA𝑜B𝑜y+𝑜A𝑜B=A𝑜B𝑜y+𝑜A𝑜B
27 nnmsuc A𝑜BωyωA𝑜B𝑜sucy=A𝑜B𝑜y+𝑜A𝑜B
28 18 27 stoic3 AωBωyωA𝑜B𝑜sucy=A𝑜B𝑜y+𝑜A𝑜B
29 nnmsuc BωyωB𝑜sucy=B𝑜y+𝑜B
30 29 3adant1 AωBωyωB𝑜sucy=B𝑜y+𝑜B
31 30 oveq2d AωBωyωA𝑜B𝑜sucy=A𝑜B𝑜y+𝑜B
32 nnmcl BωyωB𝑜yω
33 nndi AωB𝑜yωBωA𝑜B𝑜y+𝑜B=A𝑜B𝑜y+𝑜A𝑜B
34 32 33 syl3an2 AωBωyωBωA𝑜B𝑜y+𝑜B=A𝑜B𝑜y+𝑜A𝑜B
35 34 3exp AωBωyωBωA𝑜B𝑜y+𝑜B=A𝑜B𝑜y+𝑜A𝑜B
36 35 expd AωBωyωBωA𝑜B𝑜y+𝑜B=A𝑜B𝑜y+𝑜A𝑜B
37 36 com34 AωBωBωyωA𝑜B𝑜y+𝑜B=A𝑜B𝑜y+𝑜A𝑜B
38 37 pm2.43d AωBωyωA𝑜B𝑜y+𝑜B=A𝑜B𝑜y+𝑜A𝑜B
39 38 3imp AωBωyωA𝑜B𝑜y+𝑜B=A𝑜B𝑜y+𝑜A𝑜B
40 31 39 eqtrd AωBωyωA𝑜B𝑜sucy=A𝑜B𝑜y+𝑜A𝑜B
41 28 40 eqeq12d AωBωyωA𝑜B𝑜sucy=A𝑜B𝑜sucyA𝑜B𝑜y+𝑜A𝑜B=A𝑜B𝑜y+𝑜A𝑜B
42 26 41 imbitrrid AωBωyωA𝑜B𝑜y=A𝑜B𝑜yA𝑜B𝑜sucy=A𝑜B𝑜sucy
43 42 3exp AωBωyωA𝑜B𝑜y=A𝑜B𝑜yA𝑜B𝑜sucy=A𝑜B𝑜sucy
44 43 com3r yωAωBωA𝑜B𝑜y=A𝑜B𝑜yA𝑜B𝑜sucy=A𝑜B𝑜sucy
45 44 impd yωAωBωA𝑜B𝑜y=A𝑜B𝑜yA𝑜B𝑜sucy=A𝑜B𝑜sucy
46 9 13 17 25 45 finds2 xωAωBωA𝑜B𝑜x=A𝑜B𝑜x
47 5 46 vtoclga CωAωBωA𝑜B𝑜C=A𝑜B𝑜C
48 47 expdcom AωBωCωA𝑜B𝑜C=A𝑜B𝑜C
49 48 3imp AωBωCωA𝑜B𝑜C=A𝑜B𝑜C