Description: Multiplication of natural numbers is associative. Theorem 4K(4) of Enderton p. 81. (Contributed by NM, 20-Sep-1995) (Revised by Mario Carneiro, 15-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | nnmass | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 | |
|
2 | oveq2 | |
|
3 | 2 | oveq2d | |
4 | 1 3 | eqeq12d | |
5 | 4 | imbi2d | |
6 | oveq2 | |
|
7 | oveq2 | |
|
8 | 7 | oveq2d | |
9 | 6 8 | eqeq12d | |
10 | oveq2 | |
|
11 | oveq2 | |
|
12 | 11 | oveq2d | |
13 | 10 12 | eqeq12d | |
14 | oveq2 | |
|
15 | oveq2 | |
|
16 | 15 | oveq2d | |
17 | 14 16 | eqeq12d | |
18 | nnmcl | |
|
19 | nnm0 | |
|
20 | 18 19 | syl | |
21 | nnm0 | |
|
22 | 21 | oveq2d | |
23 | nnm0 | |
|
24 | 22 23 | sylan9eqr | |
25 | 20 24 | eqtr4d | |
26 | oveq1 | |
|
27 | nnmsuc | |
|
28 | 18 27 | stoic3 | |
29 | nnmsuc | |
|
30 | 29 | 3adant1 | |
31 | 30 | oveq2d | |
32 | nnmcl | |
|
33 | nndi | |
|
34 | 32 33 | syl3an2 | |
35 | 34 | 3exp | |
36 | 35 | expd | |
37 | 36 | com34 | |
38 | 37 | pm2.43d | |
39 | 38 | 3imp | |
40 | 31 39 | eqtrd | |
41 | 28 40 | eqeq12d | |
42 | 26 41 | imbitrrid | |
43 | 42 | 3exp | |
44 | 43 | com3r | |
45 | 44 | impd | |
46 | 9 13 17 25 45 | finds2 | |
47 | 5 46 | vtoclga | |
48 | 47 | expdcom | |
49 | 48 | 3imp | |