Metamath Proof Explorer


Theorem breq12d

Description: Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996) (Proof shortened by Andrew Salmon, 9-Jul-2011)

Ref Expression
Hypotheses breq1d.1 φA=B
breq12d.2 φC=D
Assertion breq12d φARCBRD

Proof

Step Hyp Ref Expression
1 breq1d.1 φA=B
2 breq12d.2 φC=D
3 breq12 A=BC=DARCBRD
4 1 2 3 syl2anc φARCBRD