Description: Define equivalence relation for positive fractions. This is a "temporary" set used in the construction of complex numbers df-c , and is intended to be used only by the construction. From Proposition 9-2.1 of Gleason p. 117. (Contributed by NM, 27-Aug-1995) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | df-enq | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | ceq | |
|
1 | vx | |
|
2 | vy | |
|
3 | 1 | cv | |
4 | cnpi | |
|
5 | 4 4 | cxp | |
6 | 3 5 | wcel | |
7 | 2 | cv | |
8 | 7 5 | wcel | |
9 | 6 8 | wa | |
10 | vz | |
|
11 | vw | |
|
12 | vv | |
|
13 | vu | |
|
14 | 10 | cv | |
15 | 11 | cv | |
16 | 14 15 | cop | |
17 | 3 16 | wceq | |
18 | 12 | cv | |
19 | 13 | cv | |
20 | 18 19 | cop | |
21 | 7 20 | wceq | |
22 | 17 21 | wa | |
23 | cmi | |
|
24 | 14 19 23 | co | |
25 | 15 18 23 | co | |
26 | 24 25 | wceq | |
27 | 22 26 | wa | |
28 | 27 13 | wex | |
29 | 28 12 | wex | |
30 | 29 11 | wex | |
31 | 30 10 | wex | |
32 | 9 31 | wa | |
33 | 32 1 2 | copab | |
34 | 0 33 | wceq | |