Metamath Proof Explorer


Definition df-enq

Description: Define equivalence relation for positive fractions. This is a "temporary" set used in the construction of complex numbers df-c , and is intended to be used only by the construction. From Proposition 9-2.1 of Gleason p. 117. (Contributed by NM, 27-Aug-1995) (New usage is discouraged.)

Ref Expression
Assertion df-enq ~𝑸=xy|x𝑵×𝑵y𝑵×𝑵zwvux=zwy=vuz𝑵u=w𝑵v

Detailed syntax breakdown

Step Hyp Ref Expression
0 ceq class~𝑸
1 vx setvarx
2 vy setvary
3 1 cv setvarx
4 cnpi class𝑵
5 4 4 cxp class𝑵×𝑵
6 3 5 wcel wffx𝑵×𝑵
7 2 cv setvary
8 7 5 wcel wffy𝑵×𝑵
9 6 8 wa wffx𝑵×𝑵y𝑵×𝑵
10 vz setvarz
11 vw setvarw
12 vv setvarv
13 vu setvaru
14 10 cv setvarz
15 11 cv setvarw
16 14 15 cop classzw
17 3 16 wceq wffx=zw
18 12 cv setvarv
19 13 cv setvaru
20 18 19 cop classvu
21 7 20 wceq wffy=vu
22 17 21 wa wffx=zwy=vu
23 cmi class𝑵
24 14 19 23 co classz𝑵u
25 15 18 23 co classw𝑵v
26 24 25 wceq wffz𝑵u=w𝑵v
27 22 26 wa wffx=zwy=vuz𝑵u=w𝑵v
28 27 13 wex wffux=zwy=vuz𝑵u=w𝑵v
29 28 12 wex wffvux=zwy=vuz𝑵u=w𝑵v
30 29 11 wex wffwvux=zwy=vuz𝑵u=w𝑵v
31 30 10 wex wffzwvux=zwy=vuz𝑵u=w𝑵v
32 9 31 wa wffx𝑵×𝑵y𝑵×𝑵zwvux=zwy=vuz𝑵u=w𝑵v
33 32 1 2 copab classxy|x𝑵×𝑵y𝑵×𝑵zwvux=zwy=vuz𝑵u=w𝑵v
34 0 33 wceq wff~𝑸=xy|x𝑵×𝑵y𝑵×𝑵zwvux=zwy=vuz𝑵u=w𝑵v