Metamath Proof Explorer


Theorem axpre-lttrn

Description: Ordering on reals is transitive. Axiom 19 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axlttrn . This construction-dependent theorem should not be referenced directly; instead, use ax-pre-lttrn . (Contributed by NM, 19-May-1996) (Revised by Mario Carneiro, 16-Jun-2013) (New usage is discouraged.)

Ref Expression
Assertion axpre-lttrn ABCA<BB<CA<C

Proof

Step Hyp Ref Expression
1 elreal Ax𝑹x0𝑹=A
2 elreal By𝑹y0𝑹=B
3 elreal Cz𝑹z0𝑹=C
4 breq1 x0𝑹=Ax0𝑹<y0𝑹A<y0𝑹
5 4 anbi1d x0𝑹=Ax0𝑹<y0𝑹y0𝑹<z0𝑹A<y0𝑹y0𝑹<z0𝑹
6 breq1 x0𝑹=Ax0𝑹<z0𝑹A<z0𝑹
7 5 6 imbi12d x0𝑹=Ax0𝑹<y0𝑹y0𝑹<z0𝑹x0𝑹<z0𝑹A<y0𝑹y0𝑹<z0𝑹A<z0𝑹
8 breq2 y0𝑹=BA<y0𝑹A<B
9 breq1 y0𝑹=By0𝑹<z0𝑹B<z0𝑹
10 8 9 anbi12d y0𝑹=BA<y0𝑹y0𝑹<z0𝑹A<BB<z0𝑹
11 10 imbi1d y0𝑹=BA<y0𝑹y0𝑹<z0𝑹A<z0𝑹A<BB<z0𝑹A<z0𝑹
12 breq2 z0𝑹=CB<z0𝑹B<C
13 12 anbi2d z0𝑹=CA<BB<z0𝑹A<BB<C
14 breq2 z0𝑹=CA<z0𝑹A<C
15 13 14 imbi12d z0𝑹=CA<BB<z0𝑹A<z0𝑹A<BB<CA<C
16 ltresr x0𝑹<y0𝑹x<𝑹y
17 ltresr y0𝑹<z0𝑹y<𝑹z
18 ltsosr <𝑹Or𝑹
19 ltrelsr <𝑹𝑹×𝑹
20 18 19 sotri x<𝑹yy<𝑹zx<𝑹z
21 16 17 20 syl2anb x0𝑹<y0𝑹y0𝑹<z0𝑹x<𝑹z
22 ltresr x0𝑹<z0𝑹x<𝑹z
23 21 22 sylibr x0𝑹<y0𝑹y0𝑹<z0𝑹x0𝑹<z0𝑹
24 23 a1i x𝑹y𝑹z𝑹x0𝑹<y0𝑹y0𝑹<z0𝑹x0𝑹<z0𝑹
25 1 2 3 7 11 15 24 3gencl ABCA<BB<CA<C