Metamath Proof Explorer


Theorem axpre-lttrn

Description: Ordering on reals is transitive. Axiom 19 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axlttrn . This construction-dependent theorem should not be referenced directly; instead, use ax-pre-lttrn . (Contributed by NM, 19-May-1996) (Revised by Mario Carneiro, 16-Jun-2013) (New usage is discouraged.)

Ref Expression
Assertion axpre-lttrn A B C A < B B < C A < C

Proof

Step Hyp Ref Expression
1 elreal A x 𝑹 x 0 𝑹 = A
2 elreal B y 𝑹 y 0 𝑹 = B
3 elreal C z 𝑹 z 0 𝑹 = C
4 breq1 x 0 𝑹 = A x 0 𝑹 < y 0 𝑹 A < y 0 𝑹
5 4 anbi1d x 0 𝑹 = A x 0 𝑹 < y 0 𝑹 y 0 𝑹 < z 0 𝑹 A < y 0 𝑹 y 0 𝑹 < z 0 𝑹
6 breq1 x 0 𝑹 = A x 0 𝑹 < z 0 𝑹 A < z 0 𝑹
7 5 6 imbi12d x 0 𝑹 = A x 0 𝑹 < y 0 𝑹 y 0 𝑹 < z 0 𝑹 x 0 𝑹 < z 0 𝑹 A < y 0 𝑹 y 0 𝑹 < z 0 𝑹 A < z 0 𝑹
8 breq2 y 0 𝑹 = B A < y 0 𝑹 A < B
9 breq1 y 0 𝑹 = B y 0 𝑹 < z 0 𝑹 B < z 0 𝑹
10 8 9 anbi12d y 0 𝑹 = B A < y 0 𝑹 y 0 𝑹 < z 0 𝑹 A < B B < z 0 𝑹
11 10 imbi1d y 0 𝑹 = B A < y 0 𝑹 y 0 𝑹 < z 0 𝑹 A < z 0 𝑹 A < B B < z 0 𝑹 A < z 0 𝑹
12 breq2 z 0 𝑹 = C B < z 0 𝑹 B < C
13 12 anbi2d z 0 𝑹 = C A < B B < z 0 𝑹 A < B B < C
14 breq2 z 0 𝑹 = C A < z 0 𝑹 A < C
15 13 14 imbi12d z 0 𝑹 = C A < B B < z 0 𝑹 A < z 0 𝑹 A < B B < C A < C
16 ltresr x 0 𝑹 < y 0 𝑹 x < 𝑹 y
17 ltresr y 0 𝑹 < z 0 𝑹 y < 𝑹 z
18 ltsosr < 𝑹 Or 𝑹
19 ltrelsr < 𝑹 𝑹 × 𝑹
20 18 19 sotri x < 𝑹 y y < 𝑹 z x < 𝑹 z
21 16 17 20 syl2anb x 0 𝑹 < y 0 𝑹 y 0 𝑹 < z 0 𝑹 x < 𝑹 z
22 ltresr x 0 𝑹 < z 0 𝑹 x < 𝑹 z
23 21 22 sylibr x 0 𝑹 < y 0 𝑹 y 0 𝑹 < z 0 𝑹 x 0 𝑹 < z 0 𝑹
24 23 a1i x 𝑹 y 𝑹 z 𝑹 x 0 𝑹 < y 0 𝑹 y 0 𝑹 < z 0 𝑹 x 0 𝑹 < z 0 𝑹
25 1 2 3 7 11 15 24 3gencl A B C A < B B < C A < C