Metamath Proof Explorer


Theorem elreal

Description: Membership in class of real numbers. (Contributed by NM, 31-Mar-1996) (New usage is discouraged.)

Ref Expression
Assertion elreal Ax𝑹x0𝑹=A

Proof

Step Hyp Ref Expression
1 df-r =𝑹×0𝑹
2 1 eleq2i AA𝑹×0𝑹
3 elxp2 A𝑹×0𝑹x𝑹y0𝑹A=xy
4 0r 0𝑹𝑹
5 4 elexi 0𝑹V
6 opeq2 y=0𝑹xy=x0𝑹
7 6 eqeq2d y=0𝑹A=xyA=x0𝑹
8 5 7 rexsn y0𝑹A=xyA=x0𝑹
9 eqcom A=x0𝑹x0𝑹=A
10 8 9 bitri y0𝑹A=xyx0𝑹=A
11 10 rexbii x𝑹y0𝑹A=xyx𝑹x0𝑹=A
12 3 11 bitri A𝑹×0𝑹x𝑹x0𝑹=A
13 2 12 bitri Ax𝑹x0𝑹=A