Metamath Proof Explorer


Theorem 0r

Description: The constant 0R is a signed real. (Contributed by NM, 9-Aug-1995) (New usage is discouraged.)

Ref Expression
Assertion 0r 0𝑹𝑹

Proof

Step Hyp Ref Expression
1 1pr 1𝑷𝑷
2 opelxpi 1𝑷𝑷1𝑷𝑷1𝑷1𝑷𝑷×𝑷
3 1 1 2 mp2an 1𝑷1𝑷𝑷×𝑷
4 enrex ~𝑹V
5 4 ecelqsi 1𝑷1𝑷𝑷×𝑷1𝑷1𝑷~𝑹𝑷×𝑷/~𝑹
6 3 5 ax-mp 1𝑷1𝑷~𝑹𝑷×𝑷/~𝑹
7 df-0r 0𝑹=1𝑷1𝑷~𝑹
8 df-nr 𝑹=𝑷×𝑷/~𝑹
9 6 7 8 3eltr4i 0𝑹𝑹