Metamath Proof Explorer


Theorem 0r

Description: The constant 0R is a signed real. (Contributed by NM, 9-Aug-1995) (New usage is discouraged.)

Ref Expression
Assertion 0r
|- 0R e. R.

Proof

Step Hyp Ref Expression
1 1pr
 |-  1P e. P.
2 opelxpi
 |-  ( ( 1P e. P. /\ 1P e. P. ) -> <. 1P , 1P >. e. ( P. X. P. ) )
3 1 1 2 mp2an
 |-  <. 1P , 1P >. e. ( P. X. P. )
4 enrex
 |-  ~R e. _V
5 4 ecelqsi
 |-  ( <. 1P , 1P >. e. ( P. X. P. ) -> [ <. 1P , 1P >. ] ~R e. ( ( P. X. P. ) /. ~R ) )
6 3 5 ax-mp
 |-  [ <. 1P , 1P >. ] ~R e. ( ( P. X. P. ) /. ~R )
7 df-0r
 |-  0R = [ <. 1P , 1P >. ] ~R
8 df-nr
 |-  R. = ( ( P. X. P. ) /. ~R )
9 6 7 8 3eltr4i
 |-  0R e. R.