Description: The equivalence relation for signed reals exists. (Contributed by NM, 25-Jul-1995) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | enrex | |- ~R e. _V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | npex | |- P. e. _V |
|
2 | 1 1 | xpex | |- ( P. X. P. ) e. _V |
3 | 2 2 | xpex | |- ( ( P. X. P. ) X. ( P. X. P. ) ) e. _V |
4 | df-enr | |- ~R = { <. x , y >. | ( ( x e. ( P. X. P. ) /\ y e. ( P. X. P. ) ) /\ E. z E. w E. v E. u ( ( x = <. z , w >. /\ y = <. v , u >. ) /\ ( z +P. u ) = ( w +P. v ) ) ) } |
|
5 | opabssxp | |- { <. x , y >. | ( ( x e. ( P. X. P. ) /\ y e. ( P. X. P. ) ) /\ E. z E. w E. v E. u ( ( x = <. z , w >. /\ y = <. v , u >. ) /\ ( z +P. u ) = ( w +P. v ) ) ) } C_ ( ( P. X. P. ) X. ( P. X. P. ) ) |
|
6 | 4 5 | eqsstri | |- ~R C_ ( ( P. X. P. ) X. ( P. X. P. ) ) |
7 | 3 6 | ssexi | |- ~R e. _V |