Metamath Proof Explorer


Theorem ltresr

Description: Ordering of real subset of complex numbers in terms of signed reals. (Contributed by NM, 22-Feb-1996) (New usage is discouraged.)

Ref Expression
Assertion ltresr A0𝑹<B0𝑹A<𝑹B

Proof

Step Hyp Ref Expression
1 ltrelre <2
2 1 brel A0𝑹<B0𝑹A0𝑹B0𝑹
3 opelreal A0𝑹A𝑹
4 opelreal B0𝑹B𝑹
5 3 4 anbi12i A0𝑹B0𝑹A𝑹B𝑹
6 2 5 sylib A0𝑹<B0𝑹A𝑹B𝑹
7 ltrelsr <𝑹𝑹×𝑹
8 7 brel A<𝑹BA𝑹B𝑹
9 opex A0𝑹V
10 opex B0𝑹V
11 eleq1 x=A0𝑹xA0𝑹
12 11 anbi1d x=A0𝑹xyA0𝑹y
13 eqeq1 x=A0𝑹x=z0𝑹A0𝑹=z0𝑹
14 13 anbi1d x=A0𝑹x=z0𝑹y=w0𝑹A0𝑹=z0𝑹y=w0𝑹
15 14 anbi1d x=A0𝑹x=z0𝑹y=w0𝑹z<𝑹wA0𝑹=z0𝑹y=w0𝑹z<𝑹w
16 15 2exbidv x=A0𝑹zwx=z0𝑹y=w0𝑹z<𝑹wzwA0𝑹=z0𝑹y=w0𝑹z<𝑹w
17 12 16 anbi12d x=A0𝑹xyzwx=z0𝑹y=w0𝑹z<𝑹wA0𝑹yzwA0𝑹=z0𝑹y=w0𝑹z<𝑹w
18 eleq1 y=B0𝑹yB0𝑹
19 18 anbi2d y=B0𝑹A0𝑹yA0𝑹B0𝑹
20 eqeq1 y=B0𝑹y=w0𝑹B0𝑹=w0𝑹
21 20 anbi2d y=B0𝑹A0𝑹=z0𝑹y=w0𝑹A0𝑹=z0𝑹B0𝑹=w0𝑹
22 21 anbi1d y=B0𝑹A0𝑹=z0𝑹y=w0𝑹z<𝑹wA0𝑹=z0𝑹B0𝑹=w0𝑹z<𝑹w
23 22 2exbidv y=B0𝑹zwA0𝑹=z0𝑹y=w0𝑹z<𝑹wzwA0𝑹=z0𝑹B0𝑹=w0𝑹z<𝑹w
24 19 23 anbi12d y=B0𝑹A0𝑹yzwA0𝑹=z0𝑹y=w0𝑹z<𝑹wA0𝑹B0𝑹zwA0𝑹=z0𝑹B0𝑹=w0𝑹z<𝑹w
25 df-lt <=xy|xyzwx=z0𝑹y=w0𝑹z<𝑹w
26 9 10 17 24 25 brab A0𝑹<B0𝑹A0𝑹B0𝑹zwA0𝑹=z0𝑹B0𝑹=w0𝑹z<𝑹w
27 26 baib A0𝑹B0𝑹A0𝑹<B0𝑹zwA0𝑹=z0𝑹B0𝑹=w0𝑹z<𝑹w
28 vex zV
29 28 eqresr z0𝑹=A0𝑹z=A
30 eqcom A0𝑹=z0𝑹z0𝑹=A0𝑹
31 eqcom A=zz=A
32 29 30 31 3bitr4i A0𝑹=z0𝑹A=z
33 vex wV
34 33 eqresr w0𝑹=B0𝑹w=B
35 eqcom B0𝑹=w0𝑹w0𝑹=B0𝑹
36 eqcom B=ww=B
37 34 35 36 3bitr4i B0𝑹=w0𝑹B=w
38 32 37 anbi12i A0𝑹=z0𝑹B0𝑹=w0𝑹A=zB=w
39 28 33 opth2 AB=zwA=zB=w
40 38 39 bitr4i A0𝑹=z0𝑹B0𝑹=w0𝑹AB=zw
41 40 anbi1i A0𝑹=z0𝑹B0𝑹=w0𝑹z<𝑹wAB=zwz<𝑹w
42 41 2exbii zwA0𝑹=z0𝑹B0𝑹=w0𝑹z<𝑹wzwAB=zwz<𝑹w
43 27 42 bitrdi A0𝑹B0𝑹A0𝑹<B0𝑹zwAB=zwz<𝑹w
44 3 4 43 syl2anbr A𝑹B𝑹A0𝑹<B0𝑹zwAB=zwz<𝑹w
45 breq12 z=Aw=Bz<𝑹wA<𝑹B
46 45 copsex2g A𝑹B𝑹zwAB=zwz<𝑹wA<𝑹B
47 44 46 bitrd A𝑹B𝑹A0𝑹<B0𝑹A<𝑹B
48 6 8 47 pm5.21nii A0𝑹<B0𝑹A<𝑹B