Metamath Proof Explorer


Definition df-lt

Description: Define 'less than' on the real subset of complex numbers. Proofs should typically use < instead; see df-ltxr . (Contributed by NM, 22-Feb-1996) (New usage is discouraged.)

Ref Expression
Assertion df-lt <=xy|xyzwx=z0𝑹y=w0𝑹z<𝑹w

Detailed syntax breakdown

Step Hyp Ref Expression
0 cltrr class<
1 vx setvarx
2 vy setvary
3 1 cv setvarx
4 cr class
5 3 4 wcel wffx
6 2 cv setvary
7 6 4 wcel wffy
8 5 7 wa wffxy
9 vz setvarz
10 vw setvarw
11 9 cv setvarz
12 c0r class0𝑹
13 11 12 cop classz0𝑹
14 3 13 wceq wffx=z0𝑹
15 10 cv setvarw
16 15 12 cop classw0𝑹
17 6 16 wceq wffy=w0𝑹
18 14 17 wa wffx=z0𝑹y=w0𝑹
19 cltr class<𝑹
20 11 15 19 wbr wffz<𝑹w
21 18 20 wa wffx=z0𝑹y=w0𝑹z<𝑹w
22 21 10 wex wffwx=z0𝑹y=w0𝑹z<𝑹w
23 22 9 wex wffzwx=z0𝑹y=w0𝑹z<𝑹w
24 8 23 wa wffxyzwx=z0𝑹y=w0𝑹z<𝑹w
25 24 1 2 copab classxy|xyzwx=z0𝑹y=w0𝑹z<𝑹w
26 0 25 wceq wff<=xy|xyzwx=z0𝑹y=w0𝑹z<𝑹w