Metamath Proof Explorer


Definition df-lt

Description: Define 'less than' on the real subset of complex numbers. Proofs should typically use < instead; see df-ltxr . (Contributed by NM, 22-Feb-1996) (New usage is discouraged.)

Ref Expression
Assertion df-lt < = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ∃ 𝑧𝑤 ( ( 𝑥 = ⟨ 𝑧 , 0R ⟩ ∧ 𝑦 = ⟨ 𝑤 , 0R ⟩ ) ∧ 𝑧 <R 𝑤 ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cltrr <
1 vx 𝑥
2 vy 𝑦
3 1 cv 𝑥
4 cr
5 3 4 wcel 𝑥 ∈ ℝ
6 2 cv 𝑦
7 6 4 wcel 𝑦 ∈ ℝ
8 5 7 wa ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ )
9 vz 𝑧
10 vw 𝑤
11 9 cv 𝑧
12 c0r 0R
13 11 12 cop 𝑧 , 0R
14 3 13 wceq 𝑥 = ⟨ 𝑧 , 0R
15 10 cv 𝑤
16 15 12 cop 𝑤 , 0R
17 6 16 wceq 𝑦 = ⟨ 𝑤 , 0R
18 14 17 wa ( 𝑥 = ⟨ 𝑧 , 0R ⟩ ∧ 𝑦 = ⟨ 𝑤 , 0R ⟩ )
19 cltr <R
20 11 15 19 wbr 𝑧 <R 𝑤
21 18 20 wa ( ( 𝑥 = ⟨ 𝑧 , 0R ⟩ ∧ 𝑦 = ⟨ 𝑤 , 0R ⟩ ) ∧ 𝑧 <R 𝑤 )
22 21 10 wex 𝑤 ( ( 𝑥 = ⟨ 𝑧 , 0R ⟩ ∧ 𝑦 = ⟨ 𝑤 , 0R ⟩ ) ∧ 𝑧 <R 𝑤 )
23 22 9 wex 𝑧𝑤 ( ( 𝑥 = ⟨ 𝑧 , 0R ⟩ ∧ 𝑦 = ⟨ 𝑤 , 0R ⟩ ) ∧ 𝑧 <R 𝑤 )
24 8 23 wa ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ∃ 𝑧𝑤 ( ( 𝑥 = ⟨ 𝑧 , 0R ⟩ ∧ 𝑦 = ⟨ 𝑤 , 0R ⟩ ) ∧ 𝑧 <R 𝑤 ) )
25 24 1 2 copab { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ∃ 𝑧𝑤 ( ( 𝑥 = ⟨ 𝑧 , 0R ⟩ ∧ 𝑦 = ⟨ 𝑤 , 0R ⟩ ) ∧ 𝑧 <R 𝑤 ) ) }
26 0 25 wceq < = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ∃ 𝑧𝑤 ( ( 𝑥 = ⟨ 𝑧 , 0R ⟩ ∧ 𝑦 = ⟨ 𝑤 , 0R ⟩ ) ∧ 𝑧 <R 𝑤 ) ) }