Metamath Proof Explorer


Definition df-ltxr

Description: Define 'less than' on the set of extended reals. Definition 12-3.1 of Gleason p. 173. Note that in our postulates for complex numbers, is primitive and not necessarily a relation on RR . (Contributed by NM, 13-Oct-2005)

Ref Expression
Assertion df-ltxr < = ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) } ∪ ( ( ( ℝ ∪ { -∞ } ) × { +∞ } ) ∪ ( { -∞ } × ℝ ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 clt <
1 vx 𝑥
2 vy 𝑦
3 1 cv 𝑥
4 cr
5 3 4 wcel 𝑥 ∈ ℝ
6 2 cv 𝑦
7 6 4 wcel 𝑦 ∈ ℝ
8 cltrr <
9 3 6 8 wbr 𝑥 < 𝑦
10 5 7 9 w3a ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 )
11 10 1 2 copab { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) }
12 cmnf -∞
13 12 csn { -∞ }
14 4 13 cun ( ℝ ∪ { -∞ } )
15 cpnf +∞
16 15 csn { +∞ }
17 14 16 cxp ( ( ℝ ∪ { -∞ } ) × { +∞ } )
18 13 4 cxp ( { -∞ } × ℝ )
19 17 18 cun ( ( ( ℝ ∪ { -∞ } ) × { +∞ } ) ∪ ( { -∞ } × ℝ ) )
20 11 19 cun ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) } ∪ ( ( ( ℝ ∪ { -∞ } ) × { +∞ } ) ∪ ( { -∞ } × ℝ ) ) )
21 0 20 wceq < = ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ) } ∪ ( ( ( ℝ ∪ { -∞ } ) × { +∞ } ) ∪ ( { -∞ } × ℝ ) ) )