Metamath Proof Explorer


Definition df-ltxr

Description: Define 'less than' on the set of extended reals. Definition 12-3.1 of Gleason p. 173. Note that in our postulates for complex numbers, is primitive and not necessarily a relation on RR . (Contributed by NM, 13-Oct-2005)

Ref Expression
Assertion df-ltxr < = x y | x y x < y −∞ × +∞ −∞ ×

Detailed syntax breakdown

Step Hyp Ref Expression
0 clt class <
1 vx setvar x
2 vy setvar y
3 1 cv setvar x
4 cr class
5 3 4 wcel wff x
6 2 cv setvar y
7 6 4 wcel wff y
8 cltrr class <
9 3 6 8 wbr wff x < y
10 5 7 9 w3a wff x y x < y
11 10 1 2 copab class x y | x y x < y
12 cmnf class −∞
13 12 csn class −∞
14 4 13 cun class −∞
15 cpnf class +∞
16 15 csn class +∞
17 14 16 cxp class −∞ × +∞
18 13 4 cxp class −∞ ×
19 17 18 cun class −∞ × +∞ −∞ ×
20 11 19 cun class x y | x y x < y −∞ × +∞ −∞ ×
21 0 20 wceq wff < = x y | x y x < y −∞ × +∞ −∞ ×