Metamath Proof Explorer


Definition df-ltxr

Description: Define 'less than' on the set of extended reals. Definition 12-3.1 of Gleason p. 173. Note that in our postulates for complex numbers, is primitive and not necessarily a relation on RR . (Contributed by NM, 13-Oct-2005)

Ref Expression
Assertion df-ltxr <=xy|xyx<y−∞×+∞−∞×

Detailed syntax breakdown

Step Hyp Ref Expression
0 clt class<
1 vx setvarx
2 vy setvary
3 1 cv setvarx
4 cr class
5 3 4 wcel wffx
6 2 cv setvary
7 6 4 wcel wffy
8 cltrr class<
9 3 6 8 wbr wffx<y
10 5 7 9 w3a wffxyx<y
11 10 1 2 copab classxy|xyx<y
12 cmnf class−∞
13 12 csn class−∞
14 4 13 cun class−∞
15 cpnf class+∞
16 15 csn class+∞
17 14 16 cxp class−∞×+∞
18 13 4 cxp class−∞×
19 17 18 cun class−∞×+∞−∞×
20 11 19 cun classxy|xyx<y−∞×+∞−∞×
21 0 20 wceq wff<=xy|xyx<y−∞×+∞−∞×