Metamath Proof Explorer


Theorem copsex2g

Description: Implicit substitution inference for ordered pairs. (Contributed by NM, 28-May-1995) Use a similar proof to copsex4g to reduce axiom usage. (Revised by SN, 1-Sep-2024)

Ref Expression
Hypothesis copsex2g.1 x = A y = B φ ψ
Assertion copsex2g A V B W x y A B = x y φ ψ

Proof

Step Hyp Ref Expression
1 copsex2g.1 x = A y = B φ ψ
2 eqcom A B = x y x y = A B
3 vex x V
4 vex y V
5 3 4 opth x y = A B x = A y = B
6 2 5 bitri A B = x y x = A y = B
7 6 anbi1i A B = x y φ x = A y = B φ
8 7 2exbii x y A B = x y φ x y x = A y = B φ
9 id x = A y = B x = A y = B
10 9 1 cgsex2g A V B W x y x = A y = B φ ψ
11 8 10 bitrid A V B W x y A B = x y φ ψ