Metamath Proof Explorer


Theorem copsex2g

Description: Implicit substitution inference for ordered pairs. (Contributed by NM, 28-May-1995) Use a similar proof to copsex4g to reduce axiom usage. (Revised by SN, 1-Sep-2024)

Ref Expression
Hypothesis copsex2g.1 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( 𝜑𝜓 ) )
Assertion copsex2g ( ( 𝐴𝑉𝐵𝑊 ) → ( ∃ 𝑥𝑦 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) ↔ 𝜓 ) )

Proof

Step Hyp Ref Expression
1 copsex2g.1 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( 𝜑𝜓 ) )
2 eqcom ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ↔ ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ )
3 vex 𝑥 ∈ V
4 vex 𝑦 ∈ V
5 3 4 opth ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ ↔ ( 𝑥 = 𝐴𝑦 = 𝐵 ) )
6 2 5 bitri ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ↔ ( 𝑥 = 𝐴𝑦 = 𝐵 ) )
7 6 anbi1i ( ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) ↔ ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) ∧ 𝜑 ) )
8 7 2exbii ( ∃ 𝑥𝑦 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) ↔ ∃ 𝑥𝑦 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) ∧ 𝜑 ) )
9 id ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( 𝑥 = 𝐴𝑦 = 𝐵 ) )
10 9 1 cgsex2g ( ( 𝐴𝑉𝐵𝑊 ) → ( ∃ 𝑥𝑦 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) ∧ 𝜑 ) ↔ 𝜓 ) )
11 8 10 bitrid ( ( 𝐴𝑉𝐵𝑊 ) → ( ∃ 𝑥𝑦 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) ↔ 𝜓 ) )