Metamath Proof Explorer


Theorem 2exbii

Description: Inference adding two existential quantifiers to both sides of an equivalence. (Contributed by NM, 16-Mar-1995)

Ref Expression
Hypothesis 2exbii.1 ( 𝜑𝜓 )
Assertion 2exbii ( ∃ 𝑥𝑦 𝜑 ↔ ∃ 𝑥𝑦 𝜓 )

Proof

Step Hyp Ref Expression
1 2exbii.1 ( 𝜑𝜓 )
2 1 exbii ( ∃ 𝑦 𝜑 ↔ ∃ 𝑦 𝜓 )
3 2 exbii ( ∃ 𝑥𝑦 𝜑 ↔ ∃ 𝑥𝑦 𝜓 )