Metamath Proof Explorer
		
		
		
		Description:  Inference adding three existential quantifiers to both sides of an
       equivalence.  (Contributed by NM, 2-May-1995)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypothesis | 
						3exbii.1 | 
						⊢ ( 𝜑  ↔  𝜓 )  | 
					
				
					 | 
					Assertion | 
					3exbii | 
					⊢  ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 𝜑  ↔  ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 𝜓 )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							3exbii.1 | 
							⊢ ( 𝜑  ↔  𝜓 )  | 
						
						
							| 2 | 
							
								1
							 | 
							exbii | 
							⊢ ( ∃ 𝑧 𝜑  ↔  ∃ 𝑧 𝜓 )  | 
						
						
							| 3 | 
							
								2
							 | 
							2exbii | 
							⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 𝜑  ↔  ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 𝜓 )  |