Metamath Proof Explorer


Theorem ltrelre

Description: 'Less than' is a relation on real numbers. (Contributed by NM, 22-Feb-1996) (New usage is discouraged.)

Ref Expression
Assertion ltrelre < 2

Proof

Step Hyp Ref Expression
1 df-lt < = x y | x y z w x = z 0 𝑹 y = w 0 𝑹 z < 𝑹 w
2 opabssxp x y | x y z w x = z 0 𝑹 y = w 0 𝑹 z < 𝑹 w 2
3 1 2 eqsstri < 2