Metamath Proof Explorer


Theorem ltrelre

Description: 'Less than' is a relation on real numbers. (Contributed by NM, 22-Feb-1996) (New usage is discouraged.)

Ref Expression
Assertion ltrelre
|- 

Proof

Step Hyp Ref Expression
1 df-lt
 |-  . | ( ( x e. RR /\ y e. RR ) /\ E. z E. w ( ( x = <. z , 0R >. /\ y = <. w , 0R >. ) /\ z 
2 opabssxp
 |-  { <. x , y >. | ( ( x e. RR /\ y e. RR ) /\ E. z E. w ( ( x = <. z , 0R >. /\ y = <. w , 0R >. ) /\ z 
3 1 2 eqsstri
 |-