| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elreal |
|- ( A e. RR <-> E. x e. R. <. x , 0R >. = A ) |
| 2 |
|
elreal |
|- ( B e. RR <-> E. y e. R. <. y , 0R >. = B ) |
| 3 |
|
elreal |
|- ( C e. RR <-> E. z e. R. <. z , 0R >. = C ) |
| 4 |
|
breq1 |
|- ( <. x , 0R >. = A -> ( <. x , 0R >. . <-> A . ) ) |
| 5 |
4
|
anbi1d |
|- ( <. x , 0R >. = A -> ( ( <. x , 0R >. . /\ <. y , 0R >. . ) <-> ( A . /\ <. y , 0R >. . ) ) ) |
| 6 |
|
breq1 |
|- ( <. x , 0R >. = A -> ( <. x , 0R >. . <-> A . ) ) |
| 7 |
5 6
|
imbi12d |
|- ( <. x , 0R >. = A -> ( ( ( <. x , 0R >. . /\ <. y , 0R >. . ) -> <. x , 0R >. . ) <-> ( ( A . /\ <. y , 0R >. . ) -> A . ) ) ) |
| 8 |
|
breq2 |
|- ( <. y , 0R >. = B -> ( A . <-> A |
| 9 |
|
breq1 |
|- ( <. y , 0R >. = B -> ( <. y , 0R >. . <-> B . ) ) |
| 10 |
8 9
|
anbi12d |
|- ( <. y , 0R >. = B -> ( ( A . /\ <. y , 0R >. . ) <-> ( A . ) ) ) |
| 11 |
10
|
imbi1d |
|- ( <. y , 0R >. = B -> ( ( ( A . /\ <. y , 0R >. . ) -> A . ) <-> ( ( A . ) -> A . ) ) ) |
| 12 |
|
breq2 |
|- ( <. z , 0R >. = C -> ( B . <-> B |
| 13 |
12
|
anbi2d |
|- ( <. z , 0R >. = C -> ( ( A . ) <-> ( A |
| 14 |
|
breq2 |
|- ( <. z , 0R >. = C -> ( A . <-> A |
| 15 |
13 14
|
imbi12d |
|- ( <. z , 0R >. = C -> ( ( ( A . ) -> A . ) <-> ( ( A A |
| 16 |
|
ltresr |
|- ( <. x , 0R >. . <-> x |
| 17 |
|
ltresr |
|- ( <. y , 0R >. . <-> y |
| 18 |
|
ltsosr |
|- |
| 19 |
|
ltrelsr |
|- |
| 20 |
18 19
|
sotri |
|- ( ( x x |
| 21 |
16 17 20
|
syl2anb |
|- ( ( <. x , 0R >. . /\ <. y , 0R >. . ) -> x |
| 22 |
|
ltresr |
|- ( <. x , 0R >. . <-> x |
| 23 |
21 22
|
sylibr |
|- ( ( <. x , 0R >. . /\ <. y , 0R >. . ) -> <. x , 0R >. . ) |
| 24 |
23
|
a1i |
|- ( ( x e. R. /\ y e. R. /\ z e. R. ) -> ( ( <. x , 0R >. . /\ <. y , 0R >. . ) -> <. x , 0R >. . ) ) |
| 25 |
1 2 3 7 11 15 24
|
3gencl |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A A |