| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elreal |
|- ( A e. RR <-> E. x e. R. <. x , 0R >. = A ) |
| 2 |
|
elreal |
|- ( B e. RR <-> E. y e. R. <. y , 0R >. = B ) |
| 3 |
|
elreal |
|- ( C e. RR <-> E. z e. R. <. z , 0R >. = C ) |
| 4 |
|
breq1 |
|- ( <. x , 0R >. = A -> ( <. x , 0R >. . <-> A . ) ) |
| 5 |
|
oveq2 |
|- ( <. x , 0R >. = A -> ( <. z , 0R >. + <. x , 0R >. ) = ( <. z , 0R >. + A ) ) |
| 6 |
5
|
breq1d |
|- ( <. x , 0R >. = A -> ( ( <. z , 0R >. + <. x , 0R >. ) . + <. y , 0R >. ) <-> ( <. z , 0R >. + A ) . + <. y , 0R >. ) ) ) |
| 7 |
4 6
|
bibi12d |
|- ( <. x , 0R >. = A -> ( ( <. x , 0R >. . <-> ( <. z , 0R >. + <. x , 0R >. ) . + <. y , 0R >. ) ) <-> ( A . <-> ( <. z , 0R >. + A ) . + <. y , 0R >. ) ) ) ) |
| 8 |
|
breq2 |
|- ( <. y , 0R >. = B -> ( A . <-> A |
| 9 |
|
oveq2 |
|- ( <. y , 0R >. = B -> ( <. z , 0R >. + <. y , 0R >. ) = ( <. z , 0R >. + B ) ) |
| 10 |
9
|
breq2d |
|- ( <. y , 0R >. = B -> ( ( <. z , 0R >. + A ) . + <. y , 0R >. ) <-> ( <. z , 0R >. + A ) . + B ) ) ) |
| 11 |
8 10
|
bibi12d |
|- ( <. y , 0R >. = B -> ( ( A . <-> ( <. z , 0R >. + A ) . + <. y , 0R >. ) ) <-> ( A ( <. z , 0R >. + A ) . + B ) ) ) ) |
| 12 |
|
oveq1 |
|- ( <. z , 0R >. = C -> ( <. z , 0R >. + A ) = ( C + A ) ) |
| 13 |
|
oveq1 |
|- ( <. z , 0R >. = C -> ( <. z , 0R >. + B ) = ( C + B ) ) |
| 14 |
12 13
|
breq12d |
|- ( <. z , 0R >. = C -> ( ( <. z , 0R >. + A ) . + B ) <-> ( C + A ) |
| 15 |
14
|
bibi2d |
|- ( <. z , 0R >. = C -> ( ( A ( <. z , 0R >. + A ) . + B ) ) <-> ( A ( C + A ) |
| 16 |
|
ltasr |
|- ( z e. R. -> ( x ( z +R x ) |
| 17 |
16
|
adantr |
|- ( ( z e. R. /\ ( x e. R. /\ y e. R. ) ) -> ( x ( z +R x ) |
| 18 |
|
ltresr |
|- ( <. x , 0R >. . <-> x |
| 19 |
18
|
a1i |
|- ( ( z e. R. /\ ( x e. R. /\ y e. R. ) ) -> ( <. x , 0R >. . <-> x |
| 20 |
|
addresr |
|- ( ( z e. R. /\ x e. R. ) -> ( <. z , 0R >. + <. x , 0R >. ) = <. ( z +R x ) , 0R >. ) |
| 21 |
|
addresr |
|- ( ( z e. R. /\ y e. R. ) -> ( <. z , 0R >. + <. y , 0R >. ) = <. ( z +R y ) , 0R >. ) |
| 22 |
20 21
|
breqan12d |
|- ( ( ( z e. R. /\ x e. R. ) /\ ( z e. R. /\ y e. R. ) ) -> ( ( <. z , 0R >. + <. x , 0R >. ) . + <. y , 0R >. ) <-> <. ( z +R x ) , 0R >. . ) ) |
| 23 |
22
|
anandis |
|- ( ( z e. R. /\ ( x e. R. /\ y e. R. ) ) -> ( ( <. z , 0R >. + <. x , 0R >. ) . + <. y , 0R >. ) <-> <. ( z +R x ) , 0R >. . ) ) |
| 24 |
|
ltresr |
|- ( <. ( z +R x ) , 0R >. . <-> ( z +R x ) |
| 25 |
23 24
|
bitrdi |
|- ( ( z e. R. /\ ( x e. R. /\ y e. R. ) ) -> ( ( <. z , 0R >. + <. x , 0R >. ) . + <. y , 0R >. ) <-> ( z +R x ) |
| 26 |
17 19 25
|
3bitr4d |
|- ( ( z e. R. /\ ( x e. R. /\ y e. R. ) ) -> ( <. x , 0R >. . <-> ( <. z , 0R >. + <. x , 0R >. ) . + <. y , 0R >. ) ) ) |
| 27 |
26
|
ancoms |
|- ( ( ( x e. R. /\ y e. R. ) /\ z e. R. ) -> ( <. x , 0R >. . <-> ( <. z , 0R >. + <. x , 0R >. ) . + <. y , 0R >. ) ) ) |
| 28 |
27
|
3impa |
|- ( ( x e. R. /\ y e. R. /\ z e. R. ) -> ( <. x , 0R >. . <-> ( <. z , 0R >. + <. x , 0R >. ) . + <. y , 0R >. ) ) ) |
| 29 |
1 2 3 7 11 15 28
|
3gencl |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A ( C + A ) |
| 30 |
29
|
biimpd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A ( C + A ) |