Description: Equality theorem for operation value. (Contributed by NM, 28-Feb-1995)
Ref | Expression | ||
---|---|---|---|
Assertion | oveq1 | |- ( A = B -> ( A F C ) = ( B F C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 | |- ( A = B -> <. A , C >. = <. B , C >. ) |
|
2 | 1 | fveq2d | |- ( A = B -> ( F ` <. A , C >. ) = ( F ` <. B , C >. ) ) |
3 | df-ov | |- ( A F C ) = ( F ` <. A , C >. ) |
|
4 | df-ov | |- ( B F C ) = ( F ` <. B , C >. ) |
|
5 | 2 3 4 | 3eqtr4g | |- ( A = B -> ( A F C ) = ( B F C ) ) |