Metamath Proof Explorer


Theorem oveq1

Description: Equality theorem for operation value. (Contributed by NM, 28-Feb-1995)

Ref Expression
Assertion oveq1
|- ( A = B -> ( A F C ) = ( B F C ) )

Proof

Step Hyp Ref Expression
1 opeq1
 |-  ( A = B -> <. A , C >. = <. B , C >. )
2 1 fveq2d
 |-  ( A = B -> ( F ` <. A , C >. ) = ( F ` <. B , C >. ) )
3 df-ov
 |-  ( A F C ) = ( F ` <. A , C >. )
4 df-ov
 |-  ( B F C ) = ( F ` <. B , C >. )
5 2 3 4 3eqtr4g
 |-  ( A = B -> ( A F C ) = ( B F C ) )