Step |
Hyp |
Ref |
Expression |
1 |
|
ax-pre-lttrn |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A A |
2 |
|
ltxrlt |
|- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> A |
3 |
2
|
3adant3 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A < B <-> A |
4 |
|
ltxrlt |
|- ( ( B e. RR /\ C e. RR ) -> ( B < C <-> B |
5 |
4
|
3adant1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B < C <-> B |
6 |
3 5
|
anbi12d |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A < B /\ B < C ) <-> ( A |
7 |
|
ltxrlt |
|- ( ( A e. RR /\ C e. RR ) -> ( A < C <-> A |
8 |
7
|
3adant2 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A < C <-> A |
9 |
1 6 8
|
3imtr4d |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A < B /\ B < C ) -> A < C ) ) |