Metamath Proof Explorer


Theorem imbi12d

Description: Deduction joining two equivalences to form equivalence of implications. (Contributed by NM, 16-May-1993)

Ref Expression
Hypotheses imbi12d.1
|- ( ph -> ( ps <-> ch ) )
imbi12d.2
|- ( ph -> ( th <-> ta ) )
Assertion imbi12d
|- ( ph -> ( ( ps -> th ) <-> ( ch -> ta ) ) )

Proof

Step Hyp Ref Expression
1 imbi12d.1
 |-  ( ph -> ( ps <-> ch ) )
2 imbi12d.2
 |-  ( ph -> ( th <-> ta ) )
3 1 imbi1d
 |-  ( ph -> ( ( ps -> th ) <-> ( ch -> th ) ) )
4 2 imbi2d
 |-  ( ph -> ( ( ch -> th ) <-> ( ch -> ta ) ) )
5 3 4 bitrd
 |-  ( ph -> ( ( ps -> th ) <-> ( ch -> ta ) ) )