Description: Deduction joining two equivalences to form equivalence of implications. (Contributed by NM, 16-May-1993)
Ref | Expression | ||
---|---|---|---|
Hypotheses | imbi12d.1 | |- ( ph -> ( ps <-> ch ) ) |
|
imbi12d.2 | |- ( ph -> ( th <-> ta ) ) |
||
Assertion | imbi12d | |- ( ph -> ( ( ps -> th ) <-> ( ch -> ta ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbi12d.1 | |- ( ph -> ( ps <-> ch ) ) |
|
2 | imbi12d.2 | |- ( ph -> ( th <-> ta ) ) |
|
3 | 1 | imbi1d | |- ( ph -> ( ( ps -> th ) <-> ( ch -> th ) ) ) |
4 | 2 | imbi2d | |- ( ph -> ( ( ch -> th ) <-> ( ch -> ta ) ) ) |
5 | 3 4 | bitrd | |- ( ph -> ( ( ps -> th ) <-> ( ch -> ta ) ) ) |