Metamath Proof Explorer


Theorem genpnmax

Description: An operation on positive reals has no largest member. (Contributed by NM, 10-Mar-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)

Ref Expression
Hypotheses genp.1 F=w𝑷,v𝑷x|ywzvx=yGz
genp.2 y𝑸z𝑸yGz𝑸
genpnmax.2 v𝑸z<𝑸wvGz<𝑸vGw
genpnmax.3 zGw=wGz
Assertion genpnmax A𝑷B𝑷fAFBxAFBf<𝑸x

Proof

Step Hyp Ref Expression
1 genp.1 F=w𝑷,v𝑷x|ywzvx=yGz
2 genp.2 y𝑸z𝑸yGz𝑸
3 genpnmax.2 v𝑸z<𝑸wvGz<𝑸vGw
4 genpnmax.3 zGw=wGz
5 1 2 genpelv A𝑷B𝑷fAFBgAhBf=gGh
6 prnmax A𝑷gAyAg<𝑸y
7 6 adantr A𝑷gAB𝑷hByAg<𝑸y
8 1 2 genpprecl A𝑷B𝑷yAhByGhAFB
9 8 exp4b A𝑷B𝑷yAhByGhAFB
10 9 com34 A𝑷B𝑷hByAyGhAFB
11 10 imp32 A𝑷B𝑷hByAyGhAFB
12 elprnq B𝑷hBh𝑸
13 vex gV
14 vex yV
15 vex hV
16 13 14 3 15 4 caovord2 h𝑸g<𝑸ygGh<𝑸yGh
17 16 biimpd h𝑸g<𝑸ygGh<𝑸yGh
18 12 17 syl B𝑷hBg<𝑸ygGh<𝑸yGh
19 18 adantl A𝑷B𝑷hBg<𝑸ygGh<𝑸yGh
20 11 19 anim12d A𝑷B𝑷hByAg<𝑸yyGhAFBgGh<𝑸yGh
21 breq2 x=yGhgGh<𝑸xgGh<𝑸yGh
22 21 rspcev yGhAFBgGh<𝑸yGhxAFBgGh<𝑸x
23 20 22 syl6 A𝑷B𝑷hByAg<𝑸yxAFBgGh<𝑸x
24 23 adantlr A𝑷gAB𝑷hByAg<𝑸yxAFBgGh<𝑸x
25 24 expd A𝑷gAB𝑷hByAg<𝑸yxAFBgGh<𝑸x
26 25 rexlimdv A𝑷gAB𝑷hByAg<𝑸yxAFBgGh<𝑸x
27 7 26 mpd A𝑷gAB𝑷hBxAFBgGh<𝑸x
28 27 an4s A𝑷B𝑷gAhBxAFBgGh<𝑸x
29 breq1 f=gGhf<𝑸xgGh<𝑸x
30 29 rexbidv f=gGhxAFBf<𝑸xxAFBgGh<𝑸x
31 28 30 imbitrrid f=gGhA𝑷B𝑷gAhBxAFBf<𝑸x
32 31 expdcom A𝑷B𝑷gAhBf=gGhxAFBf<𝑸x
33 32 rexlimdvv A𝑷B𝑷gAhBf=gGhxAFBf<𝑸x
34 5 33 sylbid A𝑷B𝑷fAFBxAFBf<𝑸x