Metamath Proof Explorer


Theorem prnmax

Description: A positive real has no largest member. Definition 9-3.1(iii) of Gleason p. 121. (Contributed by NM, 9-Mar-1996) (Revised by Mario Carneiro, 11-May-2013) (New usage is discouraged.)

Ref Expression
Assertion prnmax A𝑷BAxAB<𝑸x

Proof

Step Hyp Ref Expression
1 eleq1 y=ByABA
2 1 anbi2d y=BA𝑷yAA𝑷BA
3 breq1 y=By<𝑸xB<𝑸x
4 3 rexbidv y=BxAy<𝑸xxAB<𝑸x
5 2 4 imbi12d y=BA𝑷yAxAy<𝑸xA𝑷BAxAB<𝑸x
6 elnpi A𝑷AVAA𝑸yAxx<𝑸yxAxAy<𝑸x
7 6 simprbi A𝑷yAxx<𝑸yxAxAy<𝑸x
8 7 r19.21bi A𝑷yAxx<𝑸yxAxAy<𝑸x
9 8 simprd A𝑷yAxAy<𝑸x
10 5 9 vtoclg BAA𝑷BAxAB<𝑸x
11 10 anabsi7 A𝑷BAxAB<𝑸x