Metamath Proof Explorer


Theorem mulcompq

Description: Multiplication of positive fractions is commutative. (Contributed by NM, 31-Aug-1995) (Revised by Mario Carneiro, 28-Apr-2013) (New usage is discouraged.)

Ref Expression
Assertion mulcompq A𝑝𝑸B=B𝑝𝑸A

Proof

Step Hyp Ref Expression
1 mulcompi 1stA𝑵1stB=1stB𝑵1stA
2 mulcompi 2ndA𝑵2ndB=2ndB𝑵2ndA
3 1 2 opeq12i 1stA𝑵1stB2ndA𝑵2ndB=1stB𝑵1stA2ndB𝑵2ndA
4 mulpipq2 A𝑵×𝑵B𝑵×𝑵A𝑝𝑸B=1stA𝑵1stB2ndA𝑵2ndB
5 mulpipq2 B𝑵×𝑵A𝑵×𝑵B𝑝𝑸A=1stB𝑵1stA2ndB𝑵2ndA
6 5 ancoms A𝑵×𝑵B𝑵×𝑵B𝑝𝑸A=1stB𝑵1stA2ndB𝑵2ndA
7 3 4 6 3eqtr4a A𝑵×𝑵B𝑵×𝑵A𝑝𝑸B=B𝑝𝑸A
8 mulpqf 𝑝𝑸:𝑵×𝑵×𝑵×𝑵𝑵×𝑵
9 8 fdmi dom𝑝𝑸=𝑵×𝑵×𝑵×𝑵
10 9 ndmovcom ¬A𝑵×𝑵B𝑵×𝑵A𝑝𝑸B=B𝑝𝑸A
11 7 10 pm2.61i A𝑝𝑸B=B𝑝𝑸A